
Sequence Containers Indexing

Base Types

Python 3 Cheat Sheet©2012-2015 - Laurent Pointal
License Creative Commons Attribution 4

Latest version on :
https://perso.limsi.fr/pointal/python:memento

0783 -192int

9.23 -1.7e-60.0float
True Falsebool
"One\nTwo"

'I\'m'

str
"""X\tY\tZ
1\t2\t3"""

×10-6

escaped tab

escaped new line
Multiline string:

Container Types
list [1,5,9] ["x",11,8.9] ["mot"] []

tuple (1,5,9) 11,"y",7.4 ("mot",) ()

dict
{1:"one",3:"three",2:"two",3.14:"π"}

{"key":"value"}

set

{}

{1,9,3,0}

◾ ordered sequences, fast index access, repeatable values

set()

◾ key containers, no a priori order, fast key access, each key is unique

{"key1","key2"}

Non modifiable values (immutables)

Variables assignment

x=1.2+8+sin(y)

y,z,r=9.2,-7.6,0

a…zA…Z_ followed by a…zA…Z_0…9
◽ diacritics allowed but should be avoided
◽ language keywords forbidden
◽ lower/UPPER case discrimination

☝ expression with only comas →tuple

dictionary

collection

integer, float, boolean, string, bytes

Identifiers

☺ a toto x7 y_max BigOne
☹ 8y and for

x+=3
x-=2

increment ⇔ x=x+3
decrement ⇔ x=x-2

Conversions

for lists, tuples, strings, bytes…

int("15") → 15
int("3f",16) → 63 can specify integer number base in 2nd parameter
int(15.56) → 15 truncate decimal part
float("-11.24e8") → -1124000000.0
round(15.56,1)→ 15.6 rounding to 1 decimal (0 decimal → integer number)
bool(x) False for null x, empty container x , None or False x ; True for other x
str(x)→ "…" representation string of x for display (cf. formatting on the back)
chr(64)→'@' ord('@')→64 code ↔ char
repr(x)→ "…" literal representation string of x
bytes([72,9,64]) → b'H\t@'
list("abc") → ['a','b','c']
dict([(3,"three"),(1,"one")]) → {1:'one',3:'three'}
set(["one","two"]) → {'one','two'}
separator str and sequence of str → assembled str

':'.join(['toto','12','pswd']) → 'toto:12:pswd'
str splitted on whitespaces → list of str

"words with spaces".split() → ['words','with','spaces']
str splitted on separator str → list of str

"1,4,8,2".split(",") → ['1','4','8','2']
sequence of one type → list of another type (via list comprehension)

[int(x) for x in ('1','29','-3')] → [1,29,-3]

type(expression)

lst=[10, 20, 30, 40, 50]
lst[1]→20
lst[-2]→40

0 1 2 3 4
-5 -4 -3 -1-2 Individual access to items via lst[index]

positive index
negative index

0 1 2 3 54

-5 -4 -3 -1-2negative slice
positive slice

Access to sub-sequences via lst[start slice:end slice:step]

len(lst)→5

lst[1:3]→[20,30]

lst[::2]→[10,30,50]
lst[-3:-1]→[30,40]

lst[:3]→[10,20,30]lst[:-1]→[10,20,30,40]
lst[3:]→[40,50]lst[1:-1]→[20,30,40]

Missing slice indication → from start / up to end.
On mutable sequences (list), remove with del lst[3:5] and modify with assignment lst[1:4]=[15,25]

Conditional Statement

if age<=18:
 state="Kid"
elif age>65:
 state="Retired"
else:
 state="Active"

Boolean Logic Statements Blocks

parent statement:
 statement block 1…
 ⁝
 parent statement:
 statement block2…
 ⁝

next statement after block 1

in
de

nt
at

io
n

!

Comparisons : < > <= >= == !=≠=≥≤
a and b

a or b

not a

logical and

logical or

logical not

one or other
or both

both simulta-
-neously

if logical condition:
 statements block

statement block executed only
if a condition is true

Can go with several elif, elif... and only one
final else. Only the block of first true
condition is executed.

lst[-1]→50
lst[0]→10

⇒ last one
⇒ first one

x=None « undefined » constant value

Maths
Operators: + - * / // % **

× ÷
integer ÷ ÷ remainder

ab
from math import sin,pi…
sin(pi/4)→0.707…
cos(2*pi/3)→-0.4999…
sqrt(81)→9.0 √
log(e**2)→2.0
ceil(12.5)→13
floor(12.5)→12

escaped '

☝ floating numbers… approximated values angles in radians

(1+5.3)*2→12.6
abs(-3.2)→3.2
round(3.57,1)→3.6
pow(4,3)→64.0

for variables, functions,
modules, classes… names

Mémento v2.0.6

str (ordered sequences of chars / bytes)

(key/value associations)

☝ pitfall : and and or return value of a or
of b (under shortcut evaluation).
⇒ ensure that a and b are booleans.

(boolean results)

a=b=c=0 assignment to same value
multiple assignments

a,b=b,a values swap
a,*b=seq
*a,b=seq

unpacking of sequence in
item and list

bytes

bytes

b"toto\xfe\775"

hexadecimal octal

0b010 0xF30o642
binary octal hexa

""

empty

dict(a=3,b=4,k="v")

Items count

☝ keys=hashable values (base types, immutables…)

True
False True and False constants ☝ configure editor to insert 4 spaces in

place of an indentation tab.

lst[::-1]→[50,40,30,20,10]
lst[::-2]→[50,30,10]

1) evaluation of right side expression value
2) assignment in order with left side names

=
☝ assignment ⇔ binding of a name with a value

☝ immutables

On mutable sequences (list), remove with
del lst[3] and modify with assignment
lst[4]=25

del x remove name x

b""

@ → matrix × python3.5+numpy

☝ index from 0
(here from 0 to 4)

frozenset immutable set

Priority (…)

☝ usual order of operations
modules math, statistics, random,

 decimal, fractions, numpy, etc. (cf. doc)

Modules/Names Imports
from monmod import nom1,nom2 as fct
module truc⇔file truc.py

→direct access to names, renaming with as
import monmod →access via monmod.nom1 …

☝ modules and packages searched in python path (cf sys.path)

?
yes

no

hallow copy of sequence

?
yes no

and
*=
/=
%=
…

☝ with a var x:
if bool(x)==True: ⇔ if x:
if bool(x)==False:⇔ if not x:

raise ExcClass(…)
Signaling an error:

Errors processing:
try:
 normal procesising block
except Exception as e:
 error processing block

normal

processing

error
processing

error
processing

raiseraise X()

zero

☝ finally block for final processing
in all cases.

Exceptions on Errors

lst[:]→[10,20,30,40,50] lst[:0:-1]→[50, 40, 30, 20]

"modele{} {} {}".format(x,y,r)

"{selection:formatting!conversion}"
◽ Selection :
 2
 nom
 0.nom
 4[key]
 0[2]

str

Displayprint("v=",3,"cm :",x,",",y+4)

print options:
◽ sep=" " items separator, default space
◽ end="\n" end of print, default new line
◽ file=sys.stdout print to file, default standard output

items to display : literal values, variables, expressions

loop on dict/set ⇔ loop on keys sequences
use slices to loop on a subset of a sequence

Conditional Loop Statementstatements block executed as long as
condition is true

while logical condition:
 statements block

s = 0
i = 1

while i <= 100:
 s = s + i**2
 i = i + 1
print("sum:",s)

initializations before the loop
condition with a least one variable value (here i)

s= ∑
i=1

i=100

i2☝ make condition variable change !

statements block executed for each
item of a container or iterator

for var in sequence:
 statements block

s = "Some text"
cnt = 0

for c in s:
 if c == "e":
 cnt = cnt + 1
print("found",cnt,"'e'")

Go over sequence's values

Algo: count
number of e
in the string.

Go over sequence's index
◽ modify item at index
◽ access items around index (before / after)
lst = [11,18,9,12,23,4,17]
lost = []
for idx in range(len(lst)):
 val = lst[idx]
 if val > 15:
 lost.append(val)
 lst[idx] = 15
print("modif:",lst,"-lost:",lost)

Algo: limit values greater
than 15, memorizing
of lost values.

☝
be

w
ar

e
of

 in
fin

ite
 lo

op
s!

initializations before the loop

loop variable, assignment managed by for statement

values to formatformating directives

Integer Sequences

Files

s = input("Instructions:")
☝ input always returns a string, convert it to required type

(cf. boxed Conversions on the other side).

range(5)→ 0 1 2 3 4 range(2,12,3)→ 2 5 8 11
range(3,8)→ 3 4 5 6 7 range(20,5,-5)→ 20 15 10
range(len(seq))→ sequence of index of values in seq
 ☝ range provides an immutable sequence of int constructed as needed

range([start,] end [,step])

f = open("file.txt","w",encoding="utf8")
storing data on disk, and reading it back

opening mode
◽ 'r' read
◽ 'w' write
◽ 'a' append
◽ …'+' 'x' 'b' 't'

encoding of
chars for text
files:
utf8 ascii
latin1 …

name of file
on disk
(+path…)

file variable
for operations

f.write("coucou")
f.writelines(list of lines)

writing reading
f.read([n]) → next chars

if n not specified, read up to end !
f.readlines([n]) → list of next lines
f.readline() → next line

with open(…) as f:
 for line in f :
 # processing ofline

cf. modules os, os.path and pathlib

f.close() ☝ dont forget to close the file after use !

Very common: opening with a guarded block
(automatic closing) and reading loop on lines
of a text file:

Function Definition

def fct(x,y,z):
 """documentation"""
 # statements block, res computation, etc.
 return res

function name (identifier)

result value of the call, if no computed
result to return: return None

☝ parameters and all
variables of this block exist only in the block and during the function
call (think of a “black box”)

named parameters

Function Callr = fct(3,i+2,2*i)

☝ read empty string if end of file

len(c)→ items count
min(c) max(c) sum(c)
sorted(c)→ list sorted copy
val in c → boolean, membership operator in (absence not in)
enumerate(c)→ iterator on (index, value)
zip(c1,c2…)→ iterator on tuples containing c

i
items at same index

all(c)→ True if all c items evaluated to true, else False
any(c)→ True if at least one item of c evaluated true, else False

☝ modify original list

lst.append(val) add item at end
lst.extend(seq) add sequence of items at end
lst.insert(idx,val) insert item at index
lst.remove(val) remove first item with value val
lst.pop([idx])→value remove & return item at index idx (default last)
lst.sort() lst.reverse() sort / reverse liste in place

"{:+2.3f}".format(45.72793)
→'+45.728'
"{1:>10s}".format(8,"toto")
→' toto'
"{x!r}".format(x="I'm")
→'"I\'m"'

☝ start default 0, end not included in sequence, step signed, default 1

◽ Conversion : s (readable text) or r (literal representation)

< > ^ = 0 at start for filling with 0
integer: b binary, c char, d decimal (default), o octal, x or X hexa…
float: e or E exponential, f or F fixed point, g or G appropriate (default),
string: s … % percent

◽ Formatting :
fill char alignment sign mini width.precision~maxwidth type

+ - space

Operations on Dictionaries Operations on Sets
Operators:
 | → union (vertical bar char)
 & → intersection
 - ^ → difference/symmetric diff.
 < <= > >= → inclusion relations
Operators also exist as methods.

d.update(d2) update/add
associations

Note: For dictionaries and sets, these
operations use keys.

Specific to ordered sequences containers (lists, tuples, strings, bytes…)
reversed(c)→ inversed iterator c*5→ duplicate c+c2→ concatenate
c.index(val)→ position c.count(val)→ events count

Operations on Lists

d[key]=value
d[key]→ value

d.keys()
d.values()
d.items()

d.clear()
del d[key]

→iterable views on
keys/values/associations

E
xa

m
pl

es

d.pop(key[,default])→ value
d.popitem()→ (key,value)
d.get(key[,default])→ value
d.setdefault(key[,default])→value

s.update(s2) s.copy()
s.add(key) s.remove(key)
s.discard(key) s.clear()
s.pop()

Loop Control

Go simultaneously over sequence's index and values:
for idx,val in enumerate(lst):

☝
go

od
 h

ab
it

: d
on

't
m

od
ify

 lo
op

 v
ar

ia
bl

e

Advanced: def fct(x,y,z,*args,a=3,b=5,**kwargs):
*args variable positional arguments (→tuple), default values,
**kwargs variable named arguments (→dict)

one argument per
parameter

storage/use of
returned value

Algo:

f.flush() write cache

f.tell()→position
reading/writing progress sequentially in the file, modifiable with:

f.seek(position[,origin])

f.truncate([size]) resize

Advanced:
*sequence
**dict

s.startswith(prefix[,start[,end]])
s.endswith(suffix[,start[,end]]) s.strip([chars])
s.count(sub[,start[,end]]) s.partition(sep)→ (before,sep,after)
s.index(sub[,start[,end]]) s.find(sub[,start[,end]])
s.is…() tests on chars categories (ex. s.isalpha())
s.upper() s.lower() s.title() s.swapcase()
s.casefold() s.capitalize() s.center([width,fill])
s.ljust([width,fill]) s.rjust([width,fill]) s.zfill([width])
s.encode(encoding) s.split([sep]) s.join(seq)

?
yes

no

next

finish
…

Input

import copy
copy.copy(c)→ shallow copy of container
copy.deepcopy(c)→ deep copy of container

☝ this is the use of function
name with parentheses
which does the call

fct()

fct

fct

☝ text mode t by default (read/write str), possible binary
mode b (read/write bytes). Convert from/to required type !

break immediate exit
continue next iteration

☝ else block for normal
loop exit.

Iterative Loop Statement

Operations on Strings

Formatting

Generic Operations on Containers

